

Tetrahedron Letters 42 (2001) 2693-2696

TETRAHEDRON LETTERS

Structure of pittosporumxanthins A1 and A2, novel C_{69} carotenoids from the seeds of *Pittosporum tobira*

Yasuhiro Fujiwara* and Takashi Maoka

Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan Received 13 December 2000; revised 31 January 2001; accepted 9 February 2001

Abstract—Two novel C₆₉ carotenoids containing an α -tocopherol moiety, named pittosporumxanthins A1 (1) and A2 (2), have been isolated from the seeds of *Pittosporum tobira*. Their structures were elucidated by NMR and CD spectral analysis and chemical means. © 2001 Elsevier Science Ltd. All rights reserved.

In the course of carotenoids research,¹ we isolated two novel C_{69} carotenoids, named pittosporumxanthins A1 (1) and A2 (2), from the seeds of *Pittosporum tobira*. This paper reports the isolation and the structural elucidation of the two carotenoids.

The red-colored seeds of *P. tobira* were collected from plants growing on the bank of the Kamogawa river of Kyoto in December. The seeds (5 kg) were washed with *n*-hexane and extracted with methanol. The methanol extract was transferred to Et_2O -*n*-hexane (1:1). The organic layer was washed with H₂O, dried and evaporated under reduced pressure. The residue was saponified with 5% KOH-methanol for 12 h at 30°C and extracted with Et_2O -*n*-hexane. The extracted solution was worked up in a similar manner as above. The residual crude carotenoids (300 mg) purified by column chromatography on silica gel with ether and by HPLC on silica gel furnished pittosporumxanthins Al (1, 10 mg) and A2 (2, 10 mg).

Pittosporumxanthins A1 (1) and A2 (2) were both obtained as pale yellow amorphous powder. Acetylation of 1 and 2 with acetic anhydride in pyridine gave diacetate of 1 and 2, respectively. The molecular formulae of 1 and of 2 were established as $C_{69}H_{105}O_6$ by HR FAB-MS.² The UV–vis spectra of 1 and 2 in Et₂O showed absorption maxima at 356, 375 and 396 nm, suggesting the existence of a conjugated hexaenes chromophore.³ The CD spectra of 1 and 2 in Et₂O showed opposite Cotton effects with each other.⁴ The ¹³C NMR and DEPT experiments of 1 and 2 in CDCl₃ confirmed the presence of 69 carbons and 102 carbon-bonded protons (17 methyls, 16 methylenes and 19 methines).

Figure 1. Structures and HMBC data summary of pittosporumxanthins A1 (1) and A2 (2).

Keywords: structure elucidation; pittosporumxanthins; *Pittosporum tobira* Aiton; ¹H and ¹³C NMR; ¹H–¹H NOE. * Corresponding author. Fax: +81-75-595-4766; e-mail: fujiwara@mb.kyoto-phu.ac.jp

Table 1. ¹³C (75.4 MHz) and ¹H (300 MHz) NMR data for 1 and 2 in CDCl₃

Carbon no.	1		2		Carbon no.	1		2	
	δ^{13} C, mult.	δ ¹ H	δ^{13} C, mult.	δ ¹ H	-	δ ¹³ C, mult.	δ ¹ H	δ ¹³ C, mult.	δ ¹ H
1	35.3 s	_	35.3 s	_	16′	24.8 q	0.954	24.9 q	0.953
2	47.2 t	1.25, 1.62	47.2 t	1.24, 1.63	17′	29.5 q	1.114	29.6 q	1.128
3	64.3 d	3.90	64.3 d	3.90	18′	20.1 q	1.182	20.0 q	1.155
4	41.0 t	1.62, 2.38	41.0 t	1.62, 2.38	19′	20.5 q	1.811	20.8 q	1.815
5	67.0 s	_	67.0 s	_	20'	12.5 q	1.803	12.4 q	1.769
6	70.3 s	_	70.3 s	_	2″	74.5 s	_	74.5 s	_
7	123.8 d	5.88	123.8 d	5.88	3″	31.4 t	1.74	31.2 t	1.75
8	137.3 d	6.29	137.3 d	6.29	4″	19.6 t	2.51, 2.43	19.6 t	2.53, 2.46
9	134.1 s	_	134.1 s		5″	115.7 s	_	115.7 s	_
10	132.2 d	6.19	132.2 d	6.19	6"(10")	144.9 s	_	145.0 s	_
11	124.4 d	6.58	124.4 d	6.58	7"(8")	123.6 s	_	123.7 s	_
12	138.2 d	6.35	138.2 d	6.35	8"(7")	122.9 s	_	122.9 s	_
13	135.9 s	_	135.9 s	_	9″	115.7 s	_	115.7 s	_
14	132.5 d	6.21	132.5 d	6.19	10"(6")	145.5 s	_	145.5 s	_
15	129.4 d	6.55	129.4 d	6.54	11″	39.0 t	Na	40.7 t	Na
16	24.9 q	0.978	24.9 q	0.975	12″	21.1 t	Na	21.0 t	Na
17	29.6 q	1.148	29.6 q	1.147	13"(21")	37.5 t	Na	37.5 t	Na
18	20.0 q	1.187	20.0 q	1.186	14″	32.7 d	1.38	32.7 d	1.38
19	12.8 q	1.925	12.8 q	1.923	15″	19.6 q	0.85	19.7 q	0.86
20	13.0 q	1.946	13.0 q	1.943	16″	37.5 t	Na	37.5 t	Na
1′	35.2 s	_	35.2 s	_	17″	24.5 t	Na	24.5 t	Na
2'	47.1 t	1.23, 1.62	47.2 t	1.22, 1.62	18″	37.5 t	Na	37.5 t	Na
3'	64.2 d	3.88	64.3 d	3.88	19″	32.8 d	1.35	32.6 d	1.35
4′	40.9 t	1.61, 2.35	41.0 t	1.61, 2.36	20"	19.8 q	0.84	19.8 q	0.86
5'	66.5 s	_	66.8 s	_	21"(13")	37.3 t	Na	37.3 t	Na
6′	70.1 s	_	70.1 s	_	22"	24.8 t	~1.3	24.8 t	~1.3
7′	126.1 d	5.89	126.0 d	5.89	23″	39.4 t	1.15	39.4 t	1.15
8′	129.7 d	6.58	129.7 d	6.57	24″	28.0 d	1.52	28.0 d	1.52
9′	131.9 s	_	132.0 s	_	25"(26")	22.7 q	0.866	22.7 q	0.866
10′	130.3 d	5.12	130.4 d	5.12	26"(25")	22.6 g	0.866	22.6 g	0.866
11′	34.4 d	3.13	34.4 d	3.13	27″	24.4 q	1.246	23.3 q	1.210
12'	84.6 d	4.08	84.7 d	4.08	28″	30.2 t	2.35, 2.60	30.1 t	2.38, 2.64
13'	137.6 s	_	137.6 s	_	29"(30")	11.7 g	2.100	11.7 g	2.098
14′	128.9 d	6.16	128.9 d	6.14	30"(29")	11.8 q	2.093	11.8 q	2.089
15'	129.5 d	6.51	129.4 d	6.47	× /	*		*	

J(H-H) of **1** (Hz): 2-2=14.0, 2-3=13.0, 3.5, 3-4=8.5, 5.0, 4-4=13.5, 7-8=15.5, 10-11=11.0, 11-12=15.0, 14-15=11.0, 2'-2'=14.0, 2'-3'=13.0, 3.5, 3'-4'=8.5, 4.5, 4'-4'=13.5, 7'-8'=15.5, 10'-11'=9.8, 10'-19'=1.0, 11'-12'=9.3, 11'-28''=10.0, 5.3, 14'-15'=10.5, 15-15'=14.5, 14''-15''=6.5, 19''-20''=6.5, 24''-25''(26'')=6.8, 28''-28''=16.5. J(H-H) of **2** (Hz): 2-2=14.0, 2-3=13.0, 3.5, 3-4=8.5, 5.0, 4-4=13.5, 7-8=15.5, 10-11=11.2, 11-12=14.9, 14-15=10.7, 2'-2'=14.0, 2'-3'=13.0, 4.0, 3'-4'=8.5, 5.0, 4'-4'=13.5, 7'-8'=15.5, 10'-11'=9.8, 10'-19'=1.0, 11'-12'=9.3, 11'-28''=10.0, 5.2, 14'-15'=10.3, 15-15'=14.5, 14''-15''=6.5, 19''-20''=6.5, 24''-25''(26'')=6.7, 28''-28''=16.5. ¹H and ¹³C chemical shifts are reported downfield from internal TMS (=0.00). ¹³C and ¹H NMR signals were assigned by DEPT, ¹³C-¹H COSY, HMBC, LSPD, DQF-COSY, ROESY, and ¹H homodecoupling difference experiments and comparison with those of the related compounds (Ref. 6). Na: not assigned because of ¹H signals overlapping.

The chemical shifts of all carbons of 1 were almost identical to those of 2, except two carbons (C11" and C27"). These data suggested that the structures of 1 and 2 are the diastereoisomers.

Both the ¹³C and the ¹H NMR signals of **1** and **2** in CDCl₃ were assigned by ¹³C–¹H COSY, HMBC,^{5a} LSPD, DQF-COSY, ROESY,^{5b} and ¹H homodecoupling (including decoupling difference) experiments, and by comparison with those of the related compounds,⁶ as shown in Table 1. The HMBC and the ROESY experimental results are summarized in Figs. 1 and 2. On the basis of these spectral data, the structures of **1** and **2** have been determined, as shown in Fig. 1.

The ${}^{13}C{}^{-1}H$ COSY spectra of 1 and 2 established all the one-bond ${}^{13}C{}^{-1}H$ connectivities. The characteristic four quaternary ${}^{13}C$ signals at δ 66.5, 67.0, 70.0, and 70.3, and the ${}^{1}H{}^{-1}H$ spin couplings of ${}^{1}H$ signals at δ 3.88 and 3.90 with the adjacent hydrogens in NMR spectra of 1 and 2 imply violaxanthin end-groups as a partial structure of carotenoid. Thus, the NMR data of 1 and 2 were compared with those of *trans*-violaxanthin.^{6a} The ${}^{13}C$ and their attached ${}^{1}H$ chemical shifts and observed ${}^{1}H{}^{-1}H$ spin coupling constants of C1 to C20 and C1' to C6' in 1 and 2 were nearly identical to those of *trans*-violaxanthin. The additional experimental results of DQF-COSY and HMBC (Fig. 1), and the UV-vis data clarified the connection of C1 to C20 and

Figure 2. NOE data summary for pittosporumxanthins A1 (1) and A2 (2).

of C1' to C20', and generated 12'(–O–)-, 11'(–CH₂–)substituted 11',12'-dihydro-violaxanthin partial structure for both **1** and **2**. With regard to the remaining partial structures of **1** and **2**, their ¹H signals were unresolved owing to the signal overlapping, but their ¹³C signals were resolved effectively. The chemical shifts of unassigned remaining ¹³C signals in **1** and **2** were similar to those of α -tocopherol^{6b} except that of one carbon (δ 30.2, C28"), suggesting the existence of an α -tocopherol partial structure. This assumption was also supported by the characteristic MS fragment ions at m/z 428 and 430 in EI-MS.⁷

The connection of the violaxanthin part with the α tocophenol part was determined as follows. Based on the molecular formula, unassigned bonds of $-OCH(12')-CH(11')CH_2$ in the violaxanthin moiety and the existence of a methylene group ($\delta_{\rm C}$ 30.2) instead of a methyl group in the α -tocopherol moiety for 1 and 2, it was thought that the connection was constructed by a dihydropyran ring formation. The existence of the dihydropyran ring was also supported by the ¹H–¹H spin coupling constants of H11' with the metylene hydrogens (J=10.0 and 5.3 Hz) and with H12' (J=9.3 Hz). But the following connection was still unclear, i.e. whether $C12'-O-C6'' = C5''-CH_2-C11'$ or $C12'-O-C6'' = C7''-CH_2-C11'$. Thus, HMBC and lowpower selective ${}^{13}C{}^{1}H$ NMR (LSPD) experiments for 1 and 2 were undertaken. In the LSPD of 1 and 2 when the methyl signals at δ 2.09 and 2.10 were irradiated $(rB2/2\pi = 20 \text{ Hz})$ the four ¹³C signals at δ 144.9 (C6"), 123.6 (C7"), 122.9 (C8") and 145.5 (C10") were effectively decoupled to give sharp signals, and when the proton signals at δ 2.55 (H4" and H28") were irradiated $(rB2/2\pi \cong 50 \text{ Hz})$ the two ¹³C signals at δ 115.7 (C5" and C9") were effectively decoupled to result in sharp signals. Therefore, the whole chemical structures of 1 and 2 were determined as shown in Fig. 1.

The relative stereochemistries in 1 and 2 were estab-

lished by ROESY experiments (Fig. 2). The cis-relationship between H10' and H19' in 1 and 2 was determined by the large NOE in ROESY and the long-range coupling in ¹H-homodecoupling (decoupling difference) between them. Also, *trans*-stereochemistry between H11' and H12' in 1 and 2 was elucidated by their spin coupling constant of 9.3 Hz and the fact that no NOE was detected between them (Table 1 and Fig. 2). The absolute configurations of 3(S) and 3'(S) in both 1 and 2 were determined on the basis of the modified Mosher method.⁸ Those of 5(R), 6(S), 5'(R)and 6'(S) were also determined relative to the 3(S) and 3'(S). The chiralities of the α -tocopherol moiety in 1 and **2** were deduced to be 2''(R), 14''(R), 20''(R), because the absolute configurations of naturally occurring α -tocopherol are only known as 2(R), 14(R), 20(R). The chiralities of the remaining asymmetric carbons were estimated to be 11'(R), 12'(S) for 1 and 11'(S), 12'(R) for 2 on the basis of the opposite Cotton effects⁹ at 374 { $\Delta \varepsilon$ +26 (1), -26 (2): π - π * of hexaenes} and 243 { $\Delta \varepsilon - 52$ (1), +99 (2): $\pi - \pi^*$ of dienes} nm in the CD spectra of 1 and 2.

Finally, the ¹³C chemical shift differences at C11" ($\Delta\delta$ -1.7 ppm) and C27" ($\Delta\delta$ 1.1 ppm) between 1 and 2 seem to be produced by a subtle difference between the conformations of the pyran ring B in 1 and 2. That is, each conformation of the pyran ring A in 1 and 2, which takes the mirror image of each other specifying their ¹H chemical shifts (H11', H12', and H28") and ¹H–¹H spin-coupling constants $(J_{11'-12'} \text{ and } J_{11'-28''})$, influences those of the pyran ring B via steric (mutual) interaction between H28" and H4". On the basis of this assumption, a stereomodel examination showed that the methyl group on C2''(R) of **2** is oriented more axially to the pyran ring B plane than that of 1. However, the present experimental results are not sufficient to relate the conformation of the pyran ring A in 1 and 2 to the orientation of the methyl group on C2''(R).

References

- (a) Fujiwara, Y.; Maoka, T.; Ookubo, M.; Matsuno, T. *Tetrahedron Lett.* **1992**, *33*, 4941–4944; (b) Tsushima, M.; Fujiwara, Y.; Matsuno, T. *J. Nat. Prod.* **1996**, *59*, 30–34; (c) Maoka, T.; Mochida, K.; Okuda, Y.; Ito, Y.; Fujiwara, Y. *Chem. Pharm. Bull.* **1997**, *45*, 1225–1227.
- 2. HR FAB-MS: 1, found m/z 1029.7885 (MH)⁺, requires for C₆₉H₁₀₅O₆ 1029.7912; 2, found m/z 1029.7927 (MH)⁺, requires for C₆₉H₁₀₅O₆, 1029.7912.
- 3. UV-vis (Et₂O): Both **1** and **2**, λ (ε) 356 (79 300), 375 (123 000), 396 (118 000).
- 4. CD (Et₂O): 1, λ (Δε) 208 (+23), 214 (0), 243 (-52), 264 (0), 272 (+5), 277 (0), 283 (-5), 295 (0), 357 (+15), 364 (+13), 374 (+26), 386 (+13), 397 (+19), 426 (0); 2, λ (Δε), 208 (-51), 216 (0), 243 (+99), 260 (0), 273 (-59), 315 (-4), 357 (-20), 363 (-19), 374 (-26), 387 (-14), 395 (-20), 426 (0).
- (a) Bax, A.; Summers, M. F. J. Am. Chem. Soc. 1986, 108, 2093–2094; (b) Barchi, Jr., J. J.; Moor, R. E.; Patterson, G. M. L. J. Am. Chem. Soc. 1984, 106, 8193–8197.

- 6. (a) Moss, G. P. Pure Appl. Chem. 1976, 41, 97–102;
 (b) Matuo, M.; Urano, S. Tetrahedron 1976, 32, 229–231.
- EI-MS: 1, m/z (%) 1028 (M⁺, 0.2), 744 (3), 718 (4), 600 (18), 520 (100), 430 (88), 428 (10), 255 (20), 165 (40); 2, m/z (%) 1028 (M⁺, 0.7), 744 (5), 718 (5), 600 (28), 520 (100), 430 (78), 428 (16), 255 (20), 165 (40).
- Δδ (CDCl₃, ppm): Both di-(S and R)-MTPA ester of 1 and 2, H17 (-0.053), H16 (-0.015), H7 (+0.03), H18 (+0.063), H8 (+0.03), H17' (-0.025), H16' (-0.015), H7' (+0.04), H18' (+0.028), H8' (+0.02). cf. Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512–519. Ohtani, I.; Kusumi, T.; Ishitsuka, M. O.; Kakisawa, H. Tetrahedron Lett. 1989, 30, 3147–3150.
- Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy—Exciton Coupling in Organic Stereochemistry; University Science Book, 1983: in Japanese, Harada, N.; Nakanishi, K. Enn Nishokusei Supekutoru - Yuuki Rittai Kagaku heno Ouyou-; Tokyo Kagaku Doujinn, 1982; pp. 1–29, 144–149.